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We study a mesoscopic superconducting rod with a magnetic dot on its top having its moment oriented along
the axis of symmetry. We study the dependence of the vortex pattern with the height and find that for very short
and very long rods, the vortex pattern acquires a simple structure, consisting of giant and of multivortex states,
respectively. In the long limit, the most stable configuration consists of two vortices, that reach the lateral
surface of the rod diametrically opposed. The long rod shows reentrant behavior within some range of its
radius and of the dot’s magnetic moment. Our results are obtained within the Ginzburg-Landau approach in the
limit of no magnetic shielding.
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I. INTRODUCTION

Magnetism and superconductivity are competing orders
and its coexistence has been intensively investigated both in
nanofabricated materials1,2 and also in natural compounds.3–8

Together they bring new phenomena such as in case of mag-
netic dots on top of a superconducting film which become a
ratchet potential for moving vortices.9,10

The vortex pattern of a single mesoscopic disk can be
determined in the extreme limits of a constant homogeneous
magnetic field and of an inhomogeneous one, produced by a
magnetic dot on its top. This has been investigated both
theoretically11–14 and experimentally,2,15–18 however only in
the limit of thin disks and films. In this paper, we study the
thick disk, i.e., a “rod” with cylindrical shape �radius R and
height z0�, as shown in Fig. 1. The height can be much larger
than the coherence length, �. Thus the rod can be longer than
a disk �height comparable to �� and shorter than a wire
�micron-size height�.

In this paper, we find the vortex pattern of a supercon-
ducting mesoscopic rod caused by the presence of a mag-
netic dot on its top, taken to be a point like magnetic moment
� aligned to the central axis. The magnetic field falls with
the cubic power of the distance and, consequently, is weaker
at the bottom surface of the rod as compared to the top one,
leading to vortex patterns very distinct from the thin limit
cases. The vortices become truly three-dimensional curved
lines in space instead of the flat “coin” vortices found in the
previous two-dimensional studies. Thus the height of the rod
is a key parameter that renders the extreme cases of very
short and very long rods different. The field spatial decay is
not relevant for the short rod, and so, vortices pierce the rod
top to bottom. The field intensity is concentrated at the rod’s
axis of symmetry, making possible the nucleation of giant
vortices there. However, for the long rod, the cubic fall and
the curvature of the magnetic field streamlines favor the on-
set of curved vortices running from the top to the side sur-
face of the rod instead of reaching its bottom. Notice that for
a very long rod even an intense magnetic moment cannot
destroy the superconducting state, which always survive near

the bottom. We find here that intermediate heights comprise
very elaborate vortex patterns that mix features of both ex-
treme limits. We show here that a long rod with small radius
�R�2�� has a reentrant behavior,19 hence of interest for
technological applications. This means that the entrance and
the exit of a vortex is achieved by increasing the magnetic
field generated by the dot. Thus the present system qualifies
for technological applications as a logic gate to perform logi-
cal operation in digital circuits.20 We study rods with radii
R=2�, 3�, and 4� and in each case, we take selected heights,
ranging from z0=2� to z0=5R. Our results are obtained in the
context of the Ginzburg-Landau �GL� theory in the limit of
no magnetic shielding.

The mesoscopic superconductor gained notoriety when
the magnetic properties of very thin superconducting meso-
scopic disks were experimentally measured21–23 for several
radii and found to be in agreement with theoretical
studies24,25 based on the Ginzburg-Landau theory. The meso-
scopic superconductor is intrinsically metastable and pre-
sents hysteresis even without the presence of pinning centers.
This is because of energetic barriers separating different vor-
tex states. The rod with a magnetic moment on top also
shows these features. Recent experiments revealed a shell
structure for the vortex patterns of the mesoscopic supercon-
ductor which are accurately described by theory.26 Giant vor-
tices are observed in Bose-Einstein condensates,27 similarly
to mesoscopic superconductors, where they have been re-
cently detected.26,28 Mesoscopic superconductors and Bose-
Einstein condensates are useful systems to understand many
aspects of vortex physics, such as curved vortices due to
geometrical surface constraints29,30 and the coexistence of
vortices with different lengths31 caused by asymmetry in the
geometry. Top to bottom and top to side vortices are also
found when the rod is in the presence of an homogenous
magnetic field tilted with respect to the central axis.31 Top to
side vortices can exist for a magnetic field oriented with the
main axis in case of a cone,32 a geometry useful to under-
stand the physics of scanning tunneling microscopy done
with a superconducting tip. Recently we have shown that a
magnetic moment inside the superconductor yields a vortex
pattern that consists of fully developed three-dimensional
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vortex loops.33 Here we show that inside the rod vortices are
also three-dimensional lines, though not as fully developed
loops since the magnetic moment is outside the supercon-
ductor.

This paper is organized as follows. In Sec. II, we discuss
the order parameter within the two harmonic component ap-
proximation. The next Sec. III is dedicated to the treatment
of the Ginzburg-Landau theory with this two-component ap-
proximation. In Sec. IV, we analyze our numerical results
describing the vortex patterns for the superconducting rod
with a magnetic dot on top, and, finally in Sec. V, we con-
clude and summarize our results.

II. TWO-COMPONENT ORDER PARAMETER

The two-component approach is the simplest of all meth-
ods able to solve the full nonlinear GL theory. Besides the
ground state, the excited states can also be determined by
this method. It also provides a way to follow the evolution of
a vortex pattern with well-defined angular momenta accord-
ing to some external parameter, here being the magnetic mo-
ment �. We apply it to describe a giant-vortex �GV� state,
that pierces the rod top to bottom and the multivortex �MV�
state, which contains the curve vortex lines that pierce the
rod top to side.

We introduce cylindrical coordinates �� ,� ,z� whose ori-
gin �0,0,0� is at the intersection of the axis of symmetry with
the bottom of the rod. The system has azimuthal symmetry
and in these coordinates, the order parameter has compo-
nents of the form ��� ,� ,z�=�L�� ,z�exp�iL��, where the an-
gular momentum quantum number L is an integer due to the
single valuedness of the order parameter. The GV state con-
tains just one angular momentum L,

���,�,z� = CL�L��,z�eiL� �1�

whereas the MV state has two angular momenta,

���,�,z� = CL1
�L1

��,z�eiL1� + CL2
�L2

��,z�eiL2�. �2�

If one of the coefficients �CL1
,CL2

� vanishes the GV state is
retrieved from the MV state.

This two-component order parameter is able to describe
the nontrivial changes that take place in the vortex pattern, as
the vortices change in shape, from a simple flat “coins” to a
three-dimensional line shape by increasing the height. First,
recall that at the center of a vortex the order parameter must
vanish, �=0. Therefore, we search for points of vanishing
order parameter to detect the centers of GV and MV states
described by Eqs. �1� and �2�, respectively. For the GV state,
the center of the vortex falls in the axis of symmetry, �L��
=0,z�=0. For the MV state, the vortex centers are given by

ei�L2−L1�� = −
CL1

�L1
��v,zv�

CL2
�L2

��v,zv�
. �3�

In case the right-hand side is equal to one, the equation be-
comes exp�iL��=1, L�L2−L1. Numerical analysis shows
that this is possible only once for a radius �v and height zv,
and a coefficient ratio CL1

/CL2
. Thus for each intersecting z

plane, there are L solutions, �=0,2� /L , . . . , �L−1�2� /L,
which correspond to the centers of equally spaced vortices
set on a ring. The description of curved vortex lines, say, top
to side vortices, through Eq. �3� means that there must exist
solutions for an increasing ring �radius �v� and decreasing
height zv. Thus, we have established that the difference L2
−L1 is the number of vortices running from top to side. Next
we show that a L1 GV state is at the center. As one ap-
proaches the central axis �decreasing ��, �L2

vanishes before
�L1

because of its larger angular momentum barrier, assum-
ing that L2	L1. Thus very close to the origin the two-
component wave function reduces to ��CL1

�L1
exp�iL1�,

which means that the phase exp�iL1�� describes a top to
bottom GV state provided that �L1

vanishes at the axis of
symmetry.

The notation adopted in this work is the same used in Ref.
32: �L1 ,L2� indicates a MV state whose order parameter is
formed by �L1

and �L2
. The total vorticity is L2 that splits

into a L1 GV state, piercing the rod from top to bottom, and
L2−L1 top to side vortices. Notice that, according to this
notation, a GV state can be expressed equivalently as L GV
or as �L ,L� MV because in this last case, there is no top to
side vortices.

We find here that the rod displays two kinds of MV states,
distinguishable by how they arise and disappear from the
parent GV state. Consider a MV state obtained from a L1 GV
state by the increase in � beyond some critical value. L2
−L1 top to side vortices spring from the top surface and lead
to a �L1 ,L2� MV state. We find in our numerical solutions
that there are two different ways for this state to disappear at
some higher critical �. �i� The top to side vortices return to
the top surface where they vanish and the original L1 GV line
is retrieved. �ii� The top to side vortices move to the bottom
surface giving rise to a L2 GV state, namely, to a total vor-
ticity of �L2−L1�+L1 along the axis.

The usefulness of the two-component approach is limited
to rods with a small radius because in this case, curved vor-

FIG. 1. �Color online� This figure depicts the magnetic dot on
top of the superconducting rod and its dipolar field able to produce
curved vortices inside the superconductor.
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tices do not return to the top surface. Besides no second
splitting of vortex lines inside the rod is possible, meaning
that all top to side vortices exit at the same height. In this
case, the two-component approach is able to describe top to
side and top to bottom vortices entering the rod through its
center. Figure 2 summarizes through a pictorial view the lim-
its of applicability of the two-component approach. Figure
2�a� shows a �2, 6� MV state, assuming that at the center
there is a 2 GV state. This situation is well described by a
single two-component order parameter. Figure 2�b� presents
a situation beyond the scope of the present work because the
whole rod cannot be described by a single two-component
order parameter, although different heights can be treated by
distinct two-component order parameters. At the top the state
is the same one of Fig. 2�a�, namely, a �2,6� MV state, that
becomes a 2 GV �or equally a �2,2� MV� below to finally
turn into a �0,2� MV state. The case of Fig. 2�c�, with a
three-point intercept, is totally beyond the two-component
order parameter since a z plane intercepts twice a vortex line,
which added to a central vortex makes a total of three
intercepts.

The correctness of the two-component method is con-
firmed by the simulated annealing method applied to the
present problem34 as both methods lead to the same vortex
pattern. The onset of a second branch of vortices that splits
below the first branch is never observed using this method
for the radii considered here and for a wide range of heights.
The simulated annealing method has been applied before to
several other mesoscopic systems19,31,33 and makes no as-
sumptions about the number of angular components in the
order parameter. We conclude that no further splitting of the
vortices from the top takes place in the rod because of the
weak magnetic field at the bottom and the curvature of the
field which favors the exit of vortex lines at the lateral sur-
face and not at the bottom surface. Another argument against
a second splitting of the vortices from the top comes from
Tables I–III. The data shown in these tables support the view
that as the height increases, top to bottom vortices tend to
disappear. For instance, the R=2� rod only has for a top to
bottom vortex the 1 GV state, and so, no splitting is possible
for this rod regardless of its height. Similarly, the R=3� and
4� rods have as the maximum sustainable top to bottom vor-
ticity, beyond the 5� and 8� heights, respectively, the 1 GV
state, which renders further splitting of these lines impossible
beyond these heights.

Recently Aladyshkin et al.35 have treated the vortex pat-
tern of the rod in presence of a magnetic moment on its top
added to a homogeneous magnetic field, both oriented along
the central axis. His approach is limited to a one-component
order parameter, fitted to obtain the upper critical field using
the linearized theory. Since only vortex states with azimuthal
symmetry were included there, top to side vortices are ex-
cluded, as they demand at least two components in the order
parameter.

III. GINZBURG-LANDAU THEORY

The GL theory gives the Gibbs free energy of the super-
conductor near the critical temperature Tc by assuming its
expansion in powers of a complex order parameter ��r�� that
gives the density of Cooper pairs, ���r���2. The Ginzburg-
Landau approach to the mesoscopic superconductor has been
discussed in many references, such as in Ref. 36. In this
section, we treat the GL theory assuming that the order pa-
rameter is expressed as a linear expansion of solutions of the
linear GL equation, limited to a maximum of two terms. Due
to the mesoscopic size, the London penetration length is
much larger than the dimensions of the rod and so the mag-
netic field inside and outside the rod are taken as equal.
Hence the Gibbs free-energy difference between the super-
conducting and the normal states is

Fs − Fn =� dV	
�T����2 +
1

2
����4 +

�2

2m�


��� − i

2�

�0
A���
2
 �4�

with the phenomenological constants 
�T��
0�T−Tc��0,
�	0, m� �the mass of one Cooper pair�, and �0=hc /2e, the
fundamental unit of flux. The magnetic potential is A�
=�� / ��2+ �z−z1�2�3/2e�� and the magnetic dot occupies the
position �0,0 ,z1�. Boundary conditions are imposed to the
external surfaces of the rod. We express quantities in this
theory in dimensionless units defined by the following re-
duced units: the coherence length ��T�= �−�2 /2m�
�T��1/2

�lengths�, Hc2=�0 /2���T�2 �magnetic field�, Hc2�
=�0 /2���T� �vector potential�, �0=Hc2��T�3=�0��T� /2�

�magnetic moment�, �0=�−
�T� /� �order parameter�, and
F0=
�T�2 /2� �free energy�. In terms of these dimensionless
units, the Gibbs free-energy difference becomes

F = 2� dV	− ���2 +
1

2
���4 + ���� − iA� ���2
 . �5�

The integration is restricted to the volume of the rod. The
boundary condition in dimensionless units becomes

n� · ��� − iA� ���boundary = 0. �6�

Following Ref. 25, we introduce the L̂ linear operator, in
terms of which the nonlinear GL equation becomes

L̂� = − ���2�, L̂ � − ��� − iA� �2 − 1. �7�

Consequently, only the negative eigenvalues � of this L̂ cor-
respond to the superconducting state.

FIG. 2. �Color online� Three conceivable vortex patterns are
shown here. In �a� the top to bottom �blue� line represents one giant
vortex and the four top to side �red� lines represent single vortices.
In �b� a further splitting of the giant vortex of �a� takes place yield-
ing two single top to side vortices. In �c� top to top vortices arise
because of the large radius. The only pattern that can be described
by the present method is �a�.
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The following linear equation must be solved:

L̂�L,n��,z� = �L,n�L,n��,z� , �8�

where n enumerates the different states at a certain angular
momentum quantum number L. Following Refs. 37 and 38,
we restrict ourselves to n=0. This operator expressed in di-
mensionless units and in cylindrical coordinates becomes

L̂ = −
1

�

�

��
��

��

��
� −

�2�

�z2 +
1

�2�L −
��

��2 + �z − z1�2�3/2�2

− 1.

�9�

For the GV state described by Eq. �1�, the coefficient CL is a
constant to be determined by imposing the condition of mini-
mum free energy in Eq. �5�. One obtains

CL = ��− �L
BL

AL
�10�

and for the free energy,

F = − 2��L
2 BL

2

AL
, �11�

and the constants AL e BL are particular cases of Eqs. �14�
and �15�, discussed below. Inspection of the second deriva-
tive of the free energy shows that a negative eigenvalue �L is
the condition to render the state stable.

For the MV state of Eq. �2�, it does not matter whether the
coefficients CLi

are real or complex because the choice does
not affect the value of the free energy, and so, we can regard
them as real according to Ref. 32. By minimizing the Gibbs
free energy with respect to CL1

and CL2
using Eqs. �2� and

�5�, we obtain the following equilibrium states. �i� The nor-
mal state with ��� ,� ,z�=0 corresponds to CL1

=CL2
=0. �ii�

The GV state with CL2
=0 is ��� ,� ,z�=CL1

�L1
eiL1� with

CL1
= �−�L1

BL1
/AL1

�1/2; the CL1
=0 state is ��� ,� ,z�

=CL2
�L2

eiL2� with CL2
= �−�L2

BL2
/AL2

�1/2. �iii� The MV state
of Eq. �2� has the coefficients,

CL1
= � ��L1

AL2
BL1

− 2�L2
AL1,L2

BL2

− AL1
AL2

+ 4AL1,L2

2 �1/2

,

CL2
= � ��L2

AL1
BL2

− 2�L1
AL1,L2

BL1

− AL1
AL2

+ 4AL1,L2

2 �1/2

. �12�

The coefficients are determined by the following integrals:

AL1,L2
= �

0

z0

dz�
0

R

�d��L1

2 ��,z��L2

2 ��,z� , �13�

ALi
= �

0

z0

dz�
0

�R�

�d��Li

4 ��,z� , �14�

and

TABLE I. The sequence of ground states for the R=2� set of rods is given here. The left column displays
the height of the rods. The ground state �i� ranges between transition magnetic moments �
 /�0 and �� /�0,
as shown in the table.

z0 /� �1 /�0 1 �2 /�0 2 �3 /�0 3 �4 /�0

2 0 0 GV 16.6 1 GV 32.9

3 0 0 GV 38.2 1 GV 60.0

4 0 0 GV 70.3 1 GV 100

6 0 0 GV 100

8 0 0 GV 14.0 �0,1� MV 17.0 0 GV 100

10 0 0 GV 11.0 �0,1� MV 22.0 0 GV 100

TABLE II. The sequence of ground states for the R=3� set of rods is given here. The left column displays the height of the rods. The
ground state �i� ranges between transition magnetic moments �
 /�0 and �� /�0, as shown in the table.

z0 /� �1 /�0 1 �2 /�0 2 �3 /�0 3 �4 /�0 4 �5 /�0 5 �6 /�0 6 �7 /�0

2 0 0 GV 10.3 1 GV 19.8 2 GV 28.8 3 GV 38.6 4 GV 50.0

3 0 0 GV 12.9 1 GV 27.8 2 GV 59.1 3 GV 72.0

4 0 0 GV 15.3 1 GV 64.5 2 GV 98.5 3 GV 100

5 0 0 GV 17.0 �0,2� MV 20.5 �0,3� MV 32.5 �0,4� MV 36.9 0 GV 44.9 1 GV 100

9 0 0 GV 10.8 �0,1� MV 11.6 �0,2� MV 30.4 �0,3� MV 42.0 0 GV 100

10 0 0 GV 9.0 �0,1� MV 14.1 �0,2� MV 46.0 0 GV 100

12 0 0 GV 7.9 �0,1� MV 16.7 �0,2� MV 100

15 0 0 GV 6.8 �0,1� MV 20.0 �0,2� MV 100
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BLi
= �

0

z0

dz�
0

R

�d��Li

2 ��,z� . �15�

The free energy of the GV state is

FLi
= − 2��Li

2
BLi

2

ALi

, i = 1,2 �16�

and that of the MV state,

FL1,L2
=

2�

AL1
AL2

− 4AL1,L2

2 �− �L1

2 AL2
BL1

2 − �L2

2 AL1
BL2

2

+ 4�L1
�L2

AL1,L2
BL1

BL2
� . �17�

The stability of the two-component order parameter must be
analyzed in terms of the Hessian matrix, as done in Ref. 32.
The stability of the GV state, in case of CL1

=0 and CL2
�0

is, a negative eigenvalue, �L2
�0, and �L1

AL2
BL1

−2�L2
AL1,L2

BL2
	0. There are three conditions to render the

MV state stable, namely,

�L1
AL2

BL1
− 2�L2

AL1,L2
BL2

	 0,

�L2
AL2

BL1
− 2�L2

AL1,L2
BL2

	 0,

and

4AL1,L2
− AL1

AL2
	 0. �18�

All results of this paper correspond to numerical solutions of
Eq. �8� under the appropriate boundary condition of Eq. �6�,
applied to the external surfaces of the rod. We solve the
linear GL equation for the rod through the finite-element
method �COMSOL and MATLAB softwares� and then calculate
the Gibbs free energy of the nonlinear theory. The stability of
GV and MV states is checked during our numerical proce-
dure. The one- and two-component order parameters of Eqs.
�1� and �2� describe the GV and MV states, respectively.

IV. VORTEX PATTERNS

Based on the theory of the previous sections, we investi-
gate here three sets of superconducting rods, with radii R
=2�, 3�, and 4�, respectively, subject to the magnetic field of
the magnetic dot put on its top. Each of the three sets con-
tains selected heights, ranging from the shortest rod, z0=2�,
to the longest one, z0=5R, and intermediate heights. The
results are obtained within the magnetic moment range
� /�0=0 to 100. The magnetic-moment unit, previously de-
fined as �0=�0 /2��, corresponds to nearly a million ori-
ented Bohr magnetons �� /rc�106, for a coherence length �
�3.0 nm. Notice that the Bohr magneton can also be ex-
pressed through a length, �B=�0rc /2�, where rc is the elec-
tron classical radius.33 The magnetic dot must have size
slightly larger than the coherence length. For instance, if
spherical, it must have a radius rM =1.7�. This is required in
order to reach the saturation magnetization, M
=�B / �4�a0

3 /3�=1.49 T, defined here as being one Bohr
magneton per atom, where a0�0.05 nm is the atomic ra-
dius. Nevertheless there is another adjustable parameter, the
distance of the magnetic moment to the bottom of the rod, z1.
We choose to keep the magnetic moment at the fixed dis-
tance of 2� above the top of the rod, which means that z1
−z0=2�. Changing this distance or adjusting the intensity of
the magnetic moment are not independent procedures. Ex-
perimentally they can be useful since the dot has finite di-
mensions and to achieve the truly nonhomogeneous mag-
netic field, fundamental in order to observe the predicted
phenomena, the distance to the top surface becomes a key
parameter. Notice the following invariance property under a
scaling transformation by � for the magnetic field B
= �3�� · r̂�−�� /r3: B�� ,r ,z1 /��=B��3� ,�r ,z1�. Thus ap-
proaching the magnetic dot by 1 /� is equivalent to an in-
crease in the magnetic moment by �3. The two situations
yield fields with the same intensity at locations r and �r,
respectively.

In this paper, we have obtained the ground states and their
respective ranges of magnetic moments for the three sets of

TABLE III. The sequence of ground states for the R=4� set of rods is given here. The left column displays the height of the rods. The
ground state �i� ranges between transition magnetic moments �
 /�0 and �� /�0, as shown in the table. The states represented in bold face
are those shown in Figs. 3 and 4.

z0 /� �a /�0 i �b /�0 i+1 �c /�0 i+2 �d /�0 i+3 �e /�0 i+4 � f /�0 i+5

2 0 0 GV 8.6 1 GV 16.7 2 GV 24.3 3 GV 31.9 4 GV 39.5 5 GV

47.1 6 GV 54.8 7 GV 62.6 8 GV 70.8 9 GV 80.1 10 GV 87.0

3 0 0 GV 10.5 1 GV 20.0 2 GV 29.0 3 GV 38.9 4 GV 64.2 5 GV

82.7 6 GV 99.0 7 GV 100

4 0 0 GV 11.7 1 GV 22.8 2 GV 38.0 (2,6) MV 48.2 (2,7) MV 58.7 (3,8) MV

63.0 3 GV 82.3 4 GV 100

6 0 0 GV 12.8 1 GV 21.0 (0,3) MV 30.3 (0,4) MV 39.4 (1,5) MV 45.5 (1,6) MV

52.8 (1,7) MV 59.0 (1,8) MV 64.8 (1,9) MV 68.0 1 GV 87.4 2 GV 100

8 0 0 GV 10.9 �0,2� MV 22.7 �0,3� MV 35.4 �0,4� MV 47.0 �0,5� MV 53.5 �0,4� MV

68.7 1 GV 100

10 0 0 GV 9.0 �0,2� MV 26.6 �0,3� MV 72.3 �0,4� MV 100

14 0 0 GV 7.0 �0,1� MV 14.1 �0,2� MV 60.1 �0,3� MV 100

20 0 0 GV 5.7 (0,1) MV 19.3 (0,2) MV 100
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rods, with radii R=2�, 3�, and 4�, respectively. Their values
are summarized in Tables I–III. The left column of these
tables contains the respective height considered, ranging
from the shortest rod, z0=2�, to the longest one, z0=5R. We
summarize the notation previously developed for the �L1 ,L2�
MV, assuming L2�L1, as follows: L1 is the vorticity of the
top to bottom giant vortex, there are L2-L1 single vorticity
top to side vortices and the total vorticity is L2.

Figures 3 and 4 provide some examples of the MV states
obtained here. The semitransparent figures are three-
dimensional surface plots, that is, isodensity plots with two
kinds of surfaces. The inner ones are the vortices inside the
rod and the outer one is very near to the rod’s external sur-
face. They are obtained by fixing ���2 to a constant value,
chosen near to zero so to help visualize the center of the
vortices, where the order parameter must vanish. The differ-

ent colors used in the three-dimensional surface plots of Fig.
4 mean rods with distinct geometrical parameters. Figure 3
also contains two-dimensional phase plots, shown below the
corresponding three-dimensional surface plots. They are
taken at the bottom surface of the rod and show that indeed
the �2,6� MV and �2,7� MV have the same vorticity, equal to
a 2 GV state whereas the �3,8� MV has vorticity of a 3 GV
state. This conclusion can be directly inferred by the number
of hues observed in the phase plots, as discussed
elsewhere.36,39

The simplest set of rods has R=2� and shows a reentrant
behavior. Six distinct heights �z0=2�, 3�, 4�, 6�, 8�, and
10�� are analyzed here. The ground states and their respec-
tive ranges are summarized in Table I. The free energy ver-
sus magnetic-moment plots are shown in Fig. 5. The shortest
rod, z0=2�, only has GV states. The 1 GV state is a ground
state for the z0=2�, 3�, and 4� but not for the last two long-
est rods considered, namely, 8� and 10�, where it is just an
excited vortex state. The 2 GV state never becomes a ground
state, only exists as an excited one. For the 3�, and longer
ones, it is not even present. According to our previous dis-
cussion, long rods cannot sustain GV states. Notice the in-
crease in the upper critical field as the rods become longer.
For the z0=4� rod, it falls beyond the magnetic-moment
range studied here. Notice that for the 6� rod, no GV states
are possible at all, and so this rod is empty of vortex states.
The 0 GV and 1 GV lines do not cross each other within the
studied range, and so, the 1 GV state is not possible there.
The last two longest rods show a turn around in this trend set
by the 6� rod. There we find the onset of the �0,1� MV state,
a single vortex line piercing the rod top to side. The �0,1�
MV state is of type �i� since its onset and disappearance is
from the 0 GV line. Thus it exists within a finite magnetic-
moment range and once the maximum moment is reached
this vortex is expelled from where it came from, the top
surface. Since the 0GV state is retrieved, a reentrant behavior
is observed here. This �0,1� MV state begins at some critical
height z0 and its window grows by increasing the rod’s
height up to some saturation window. Among the studied set
of rods, this has the simplest behavior since it does not tol-
erate more than one GV and also no more than one MV state.
Notice that reentrant behavior is very much connected with
the minimal geometrical condition for the onset of a single

FIG. 3. �Color online� The topmost sequence of plots are
isodensity three-dimensional �blue� plots corresponding to the �2,6�,
�2,7�, and �3,8� states. The middle row shows the first two states
from a top view of the rod while the last one from a bottom view.
The lower plots are two-dimensional plots of the phase, taken at the
bottom of the rod. The blue to red hue corresponds to a scale rang-
ing from 0 to 2� and reveals angular momentum 2, 2, and 3 for
these states �left to right�. The three states are ground states of the
�R=4� ,z0=4�� rod, as shown �bold face� in Table III.

FIG. 4. �Color online� Two sequences of isodensity three-dimensional plots are shown for the �R=4� ,z0=6�� �magenta� and
�R=4� ,z0=20�� �red� rods, respectively. They correspond to the sets ��0,3�,�0,4�,�1,5�,�1,6�,�1,7�,�1,8�,�1,9�� and ��0,1�,�0,2��, respectively, as
seen in Table III. These are ground states of the rod, as shown �bold face� in Table III.
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vortex. As shown here, the reentrant behavior is a conse-
quence of competing geometrical and physical parameters.
Mesoscopic superconductors in the presence of a constant
applied external field do not display reentrant behavior, al-
though they do have minimal geometrical requirements for
the entrance of a single vortex. For a superconducting disk,
the entrance of a vortex depends on its radius, R.39 If com-
parable to the coherence length, �, only the Meissner state is
possible, but for ��R�2�, giant-vortex states are allowed
while for R	2�, multivortex states become possible.

The set of rods with R=3� has its ground states and their
respective ranges summarized in Table II. Their free energy
versus magnetic-moment plots are shown in Fig. 6. Eight
heights are considered �z0=2�, 3�, 4�, 5�, 9�, 10�, 12�, and
15��. This set is richer than the previous one because more
vortices can fit inside the rod. The GV states range from 0
GV to 5 GV for the shortest one, z0=2�, although the 5 GV
is only an excited state. The normal state is reached by the 4
GV state at � /�0=50.0. Increasing the height shifts the up-
per critical field upward. For the z0=3� rod, the normal state
is reached at a higher moment, � /�0=72.0. The 5 GV state
no longer exists and the 4 GV becomes just an excited state.

For the z0=4� rod, we see the onset of the �0,3� MV and
�0,4� MV states, though just as excited states since the 1 GV
is the ground state within the range of their existence. For the
next case, the z0=5� rod, these MV states become ground
states in sequence: �0,2� MV, �0,3� MV, and �0,4� MV, as
summarized in Table III. They all arise and disappear from
the 0 GV line, and the last one is replaced by the 1 GV state
as the ground state. For the z0=9� rod, we observe the onset
of the �0,1� MV state within a very small range and just as an
excited state. However, it becomes a ground state for the z0
=10� rod. For the last four rods studied �z0=9�, 10�, 12�,
and 15�� the 0 GV, 1 GV, and 2 GV lines do not cross each
other, and so, only the 0 GV qualifies for a ground state. We
notice that in this regime of nonintersecting GV lines, all
MV lines start and end from a single GV line �type �i��.
Consequently MV states which are ground states arise and
end from the 0 GV line, characterizing a reentrant behavior,
like the one found in the previous set of rods. This reentrant
behavior is seen for the z0=10� but not for the two longest
rods. There it is impossible to expel the �0,2� MV state. We
have checked that this is true beyond the magnetic-moment
range studied here, namely, up to � /�0=1000. For the z0
=12� and the 15�, only �0,1� MV and �0,2� MV states are
MV ground states.

For the R=4� rods, we consider eight possible heights
�z0=2�, 3�, 4�, 6�, 8�, 10�, 14�, and 20��. The shortest rod
�z0=2�� has 12 GV states �L=0–11� but the highest one in
angular momentum, the 11 GV state, is only an excited state.
The remaining states, from 0 GV to 10 GV, become ground
states within specific ranges, as shown in Table III. Notice
that the superconducting state is destroyed at � /�0=87.0
thus below the maximum studied value of �max /�0=100.
There are no MV states in this case. For the z0=3� rod, the
number of GV states drops to 8 states �L=0–7� and the
upper critical field falls beyond the studied range. This rod
has MV states of the second kind, �ii�, previously introduced,
as they are bridges connecting different GV states. The fol-
lowing MV states are observed for this rod:�0,4�, �0,5�, �0,6�,
�0,7�, �1,5�, �1,6�, �1,7�, �1,8�, �2,6�, �2,7�, �2,8�, �2,9�, and
�3,8�. For the z0=4� rod, there are 8 GV states �L=0–7� but
only the 0 GV, 1 GV, 2 GV, 3 GV, and 4 GV are ground
states. The following MV states are observed: �0,k0�, k0
=3–9, �1,k1�, k1=4–9 �2,k2�, k2=5–9, �3,k3� k3=7–9.
Table III lists those that are ground states. There are also 8
GV states �L=0–7� for the z0=6� rod and 2 GV, 3 GV, 4 GV,
and 5 GV lines form a set of nonintersecting lines, thus
among them only the lowest one, 2 GV, qualifies for a
ground state. Indeed only 0 GV, 1 GV, and 2 GV become
ground states. The following MV states are observed for this
rod:�0,k0�, k0=3–9, �1,k1�, k1=4–9, �2,k2�, k2=7–9,
�3,k3� k3=7–9. Table III only lists those that are ground
states. For the z0=8� rod, there are 8 GV states �L=0–7�.
Only the 0–5 GV lines reach the maximum studied value of
�max /�0=100, others disappear before, at different critical
magnetic moments. The lines 2–7 GV are nonintersecting,
and so, only 2 GV among them qualifies as a ground state.
Nevertheless it never becomes one and only 0 GV and 1 GV
are, as listed in Table III. The following MV states are ob-
served for this rod: �0,k0�, k0=2–9, �1,k1�, k1=3–9, �2,k2�,
k2=5–9, and �3,8�, and those that become ground states are

FIG. 5. �Color online� The free energy versus magnetic moment
is shown for the set of cylindrical rods with radius R=2�. Six dis-
tinct heights are considered, z0=2�, 3�, 4�, 6�, 8�, and 10�. �Black�
lines are giant-vortex states labeled by their angular momentum L.
The only possible multivortex state is the �red� line �0,1� MV. All
the existing states within the studied range are shown here.
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listed in Table III. The z0=10� rod displays the same GV
state behavior of the previous case. The following MV states
are observed for this rod: �0,k0�, k0=1–9, �1,k1�, k1=3–9,
�2,k2�, k2=5–9, and �3,8� and Table III only lists those that
become ground states, namely, �0,2� MV, �0,3� MV, and �0,4�
MV. For the z0=14� rod, only the 0–5 GV lines reach the
maximum magnetic moment, like found for the two previous
rods. All GV lines are nonintersecting ones, and so, only the
0 GV line can be a ground state. Of the observed MV states,
�0,k0�, k0=1–9, �1,k1�, k1=3–9, �2,k2�, k2=5–9, and �3,8�,
only �0,1� MV, �0,2� MV, and �0,3� MV are ground states, as

listed in Table III. The z0=20� rod has the same features of
the previous case, however only �0,1� MV and �0,2� MV are
ground states according to Table III. These states do not re-
turn to the 0 GV line even beyond the magnetic-moment
range studied, at least up to � /�0=1000.

Figure 7 shows the behavior of the first 6 GV lines �L
=0–5� and MV states up to the �4,5� MV state for the R
=4� rod. Thus this figure does not display all the existing
states for the studied rods �z0=2�, 3�, 4�, 6�, 8�, 10�, 14�,
and 20��. We choose not to show all states in Fig. 7 to help
the reader visualize the lowest angular momentum lines. This

FIG. 6. �Color online� The free energy versus magnetic moment is shown for the set of cylindrical rods with radius R=3�. Six distinct
heights are considered, z0=2�, 3�, 4�, 5�, 9�, 10�, 12�, and 15�. �Black� lines are giant-vortex states labeled by their angular momentum L.
Multivortex states are �colored� lines labeled by �L1 ,L2�. All the existing states within the studied range are shown here.
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is the most important aspect as the ground state of the rod in
the long limit falls within these lines. For this reason, we
follow the evolution of these first lines, as a function of the
rod’s height. The R=4� family, besides being more complex
than previous ones, also present novel features not found in
the previous two sets. Notice that Fig. 7 displays for the
shortest rod, z0=2�, � /�0=64 as the maximum moment
reached by the 5 GV line, which is not the upper critical
field. The z0=3� rod displays MV states of the second kind,
�ii�, previously discussed. They are not ground states and

each one interconnect two distinct GV lines. Figure 7 shows
the �0,4� MV line, which arises from the 0 GV line and ends
in the 4 GV line. Similarly the �0,5� MV and the �1,5� MV
lines bridge the 0 GV and the 1 GV lines, respectively, to the
5 GV line. Notice the absence of the �0,1� MV, �0,2� MV, and
�0,3� MV states. The next case, z0=4�, has MV of the two
kinds, �i� and �ii�. Figure 7 shows that the �0,3� MV, �0,4�
MV, and �0,5� MV are type �ii� because they interconnect the
0 GV line to the 3 GV, 4 GV, and 5 GV lines, respectively.
The �1,4� MV, �1,5� MV, and �2.5� MV are of type �i�,

FIG. 7. �Color online� The free energy versus magnetic moment is shown for the set of cylindrical rods with radius R=4�. Six distinct
heights are considered, z0=2�, 3�, 4�, 6�, 8�, 10�, 14�, and 20�. �Black� lines are giant-vortex states labeled by their angular momentum L.
Multivortex states are �colored� lines labeled by �L1 ,L2�. Only states up to L=5 and �L1=4,L2=5� are shown here.
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namely, they are not bridge states. The beginning and the end
of these lines are in one single GV line. The �1,4� MV and
�1,5� MV states belong to the 1 GV line, as the �2,5� MV
belongs to the 2 GV line. According to Fig. 7, the �2,5� MV
state is the lowest in energy but this is not so because there
are lines not displayed there. Figure 7 suggests the sequence
of ground states �0 GV, 1 GV, 2 GV, �2,5� MV, 2 GV, 3 GV,
and 4 GV� which does not match the true ground-state se-
quence of Table III �0 GV, 1 GV, 2 GV,�2,6� MV,�2,7� MV,
�3,8� MV,3 GV, and 4 GV�. This is because not all lines are
shown in Fig. 7, as previously discussed. The z0=6� rod is a
very rich case, as it is intermediate between the short and the
long limits, which according to Table III form the following
sequence of ground states: 0 GV, 1 GV, �0,3� MV, �0,4� MV,
�1,5� MV, �1,6� MV, �1,7� MV, �1,8� MV, �1,9� MV, 1 GV,
and 2 GV�. Notice the sequence given by Fig. 7: 0 GV, 1 GV,
�0,3� MV, �0,4� MV, �1,5� MV, 1 GV, and 2 GV. The �0,3�
MV state is the first MV ground state, and it takes over the 1
GV state as the ground state. For the z0=8� rod and longer
ones, the ground states, as read from Fig. 7, are the true ones
since they coincide with those of Table III. The z0=8� rod
shows the curious feature that the 1 GV intersects the 0 GV
three times �� /�0=24.3, 22.5, and 66.3� and for � /�0
=68.7 overcomes the �0,4� MV line to become the ground
state. For the z0=10� rod and longer ones, the �0,L� MV
lines emerging from the 0GV are the only ground states, but
their return to the 0 GV line is not observed within the stud-
ied range. The �0,1� MV line is first seen in the z0=10� rod,
within a very small range, �� /�0=11.0–13.0� but only as an
excited state. For the z0=14� rod, it becomes a ground state
and for the longest one, z0=20�, stabilizes within the range
�� /�0=5.7–19.3� as shown in Table III. Thus the major
conclusion from Fig. 7 is that the �0,2� MV state is a very
stable ground state for long rods which dominates most of
the range with the exception of a small part at lower mag-

netic moment where the �0,1� MV state prevails.
The phase diagrams for the short and long rods best sum-

marize our results. To obtain them, we determine the angular
momentum of the ground state for each pair of values,
�� ,R�, in these two extreme cases. The plot R versus � re-
veals for the short limit, taken as z0=2�, that only top to
bottom vortices are ground states, as seen in Fig. 8. In the
opposite limit, we fix the height to be z0=5R, where only top
to side vortices qualify as ground states. Hence the height
varies continuously with the radius in this diagram, ranging
from z0=2.5� for R=0.5� to z0=20.0� for R=4.0�. Figure 9
shows genuine MV states as there is no top to bottom vorti-
ces there, just top to side. The long-limit phase diagram
shows reentrant behavior, as previously discussed that corre-
sponds to the entrance and exit of a top to side vortex. The
long rod of Fig. 9 never reaches the upper critical field but
the short rod of Fig. 8 does it, as superconductivity is de-
stroyed by a sufficiently strong �. For instance, the linear
increase in � for a R=2.0� short rod takes it from the 0 GV
state to the 1 GV and next to the normal state, as seen in
Figs. 5 and 8. We remark the presence of a triple state point
in both diagrams. Figure 8 shows that 0 GV, 1 GV, and the
normal state meet approximately at �� /�0�30,R /��1.5�.
Figure 9 shows that �0,0� MV, �0,1� MV, and �0,2� MV meet
approximately at �� /�0�24,R /��2.2� and corresponds to
the entrance and exit of a top to bottom vortex.

V. CONCLUSION

We have obtained here the vortex patterns of a mesos-
copic rod with a magnetic moment put on its top. The mo-
ment is aligned with the rod’s central axis. We find that vor-
tex patterns change significantly according to the rod’s
height and radius and all this is described by the Ginzburg
Landau theory. The order parameter has only two angular

FIG. 8. �Color online� This plot shows the ground state of su-
perconducting rods with height z0=2� according to the radius R and
the strength � of the magnetic dipole placed on the top of the rod.
The ground state is only made of giant vortices that pierce the rod
top to bottom.

FIG. 9. �Color online� This plot shows the ground state of su-
perconducting rods with height z0=5R according to the radius R
and the strength � of the magnetic dipole place on the top of the
rod. The ground state is only made of multi vortices that pierce the
rod top to side.
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components, which is sufficient to describe a vortex pattern
made of a central vortex and of a single shell of surrounding
vortices, and so, curved vortices, which exit the lateral sur-
face, can be described within the present treatment. This is
possible as long as the radius of the rod is small enough to
forbid the return of the vortex lines to the top surface. No
second splitting of the vortices inside the rod is considered
here. Thus the vortex patterns are made of top to bottom and
top to side vortices, well described here by giant and multi-
vortex states, which dominate the short and long rods, re-
spectively. We find truly reentrant behavior for long rods, an
interesting feature that qualifies the superconducting rod with

a magnetic moment on top for logical applications in elec-
tronic devices.
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